
MATHEMATICS OF COMPUTATION
VOLUME 41, NUMBER 163
JULY 1983, PAGES 287-294

Factoring Large Numbers With a Quadratic Sieve

By Joseph L. Gerver

Abstract. The quadratic sieve algorithm was used to factor a 47-digit number into primes. A
comparison with Wagstaff's results using the continued fraction early abort algorithm suggests
that QS should be faster than CFEA when the number being factored exceeds 60 digits (plus
or minus ten or more digits, depending on details of the hardware and software).

I. Introduction. Pomerance [7] has shown that, if one makes certain reasonable but
unproved assumptions, his quadratic sieve algorithm (QS) is asymptotically faster
than any other known general algorithm for factoring large numbers, with the
possible exception of a very recent algorithm of Schnorr [8]. In particular, for
sufficiently large numbers, the quadratic sieve algorithm is faster than the continued
algorithm (CF) of Brillhart and Morrison [6]. even if the latter includes the early
abort modification (CFEA).

I have recently used the quadratic sieve algorithm to factor the 47-digit number
17674971819005665268668200903822757930076116201, a factor of 3225 - 1 which
was known [1] to be composite but had never been factored, into three prime
factors: 119634969443826601, 286870274711101, and 515009259868501. Wagstaff
[9] has recently used both CF and CFEA to factor several 47-digit numbers. A
comparison of the execution times for these programs indicates that QS becomes
faster than CF when the number to be factored exceeds 40 digits, and faster than
CFEA when the number exceeds 60 digits. However, the ratio of the running time of
QS to each of the other algorithms is quite insensitive to the size of the factored
number. Thus the break-even points of 40 and 60 digits could easily be off by ?10
digits, depending on details of the hardware and software.

II. Description of the Algorithms. All modern general factoring algorithms (i.e.
algorithms which do not require the factored number to be of any special form) are
based on Fermat's observation that a composite number n can be factored if one
can find two squares x2 _y2 (mod n), such that x Ec ? y (mod n). For then
n I (x2 _ y2) = (x + y)(x -y) but n does not divide x + y or x -y; hence the
greatest common divisors (n, x + y) and (n, x - y) are proper factors of n.

To find two such squares, one starts with a factor base of k primes, PI, ... ,Pk, and
then searches for sequences of integers a1,...,ak?+l and b1,...,bk+? such that, for
each i, a7 b, (mod n) and b, can be completely factored over the factor base; i.e.

b,~ 11 rPJ'I

Received June 24, 1982.
1980 Mathematics Sublect Classification. Primary IOA25; Secondary 10-04, 68C25.

? 1983 American Mathematical Society

0025-5718/83/0000- 1432/$04.75

287

288 JOSEPH L. GERVER

For each i, let vi = (vi,1... , vik) be the vector over the integers mod 2 such that, for
each j, v,,= c,j (mod 2). There must exist a linear dependency among the vectors
v1,. .. ,Vk+ +, and hence a set S such that ZEl Vi = 0. Therefore f iesbi is a perfect
square, y2, which is congruent (mod n) to x2 = fics a7. If the a, are chosen at
random [4], there is a 50% chance (or more if n is the product of more than two
primes) that x Z ? y (mod n). If x is congruent to ?y, one simply finds another pair

ak+29 k+2b and another linear dependency, and tries again until n is factored.
For CF, one searches for the a 's among the numerators of the continued fraction

convergents of Vnh. To test whether a candidate for bi can be factored over the factor
base, one must try to divide it by each prime pj. In CFEA, these trial divisions are
aborted if the candidate fails too many of the early ones.

For QS, one searches for the a 's among consecutive integers starting with [n],
the integral part of Fn. It is only necessary to divide n and [Vn] by each pj and solve
a quadratic congruence mod pj. After that, large blocks of possible bi's can be sieved
at once, and no trial divisions are needed.

III. Implementation of the Quadratic Sieve. The quadratic sieve algorithm was
implemented with a FORTRAN program on an HP3000/series 3 computer. The
initial factor base contained 1000 elements, namely the first 999 primes modulo
which n (the number factored) is a quadratic residue, plus the "prime" -1. The
element -1 was included so that the numbers bi could be negative as well as positive,
thus doubling the number of candidates for bi less than a given absolute value.

First, the quadratic congruence

([] + z) -nn0 (mod p)

was solved for p equal to each prime in the factor base, and also modulo the squares
of all the primes, the cubes of all primes less than 130, and higher powers of the
smallest primes. This process required 7 minutes of CPU time, using a fast algorithm
in the spirit of Lehmer [5].

The integers [En] + m were then sieved, in blocks of 10000, for m up to
400,000,000 and down to -499,999,999. Each block was sieved by initially setting
each element of a 10000 element array, SUMLOG, to the logarithm of the corre-
sponding integer in each block. Then, for each odd prime p in the factor base, the
logarithm of p was subtracted from SUMLOG(J), where J was initially set to z, and
Z2, respectively, the two solutions of the above congruence, and then increased by
increments of p until J was greater than 10000. The final values of J were then
decreased by 10000 and stored, to be used as initial values for the next block. This
procedure was then repeated for p2, and, where appropriate, for higher powers of p.
For powers of p too high to be included in the sieve, trial division was employed
where necessary. The same procedure was then used for powers of two, except that J
was incremented by the previous power of two, since in this case n 1 (mod 8), and
therefore the quadratic congruences modulo powers of two have four solutions each.
To speed things up by using fixed-point instead of floating-point arithmetic, and to
conserve memory, all logarithms were taken to be the integral part of 10 log2.

After sieving with all primes and prime powers, the array SUMLOG was scanned
to pick out values close to zero, which would indicate a number b1 = ([vFn3 + m)2 - n

FACTORING LARGE NUMBERS WITH A QUADRATIC SIEVE 289

completely factored into primes in the factor base. For each such b,, the vector vi,
was computed and stored, along with m, in a disc file. Altogether, 327 such numbers
were found. In addition, SUMLOG was scanned to pick out values less than twice
the log of plow, the largest prime in the factor base. These elements of SUMLOG
corresponded to numbers b, which factored into primes in the factor base, except for
one larger factor which was less than p20, and hence prime. The vectors for these
numbers, 25747 in all, were also stored in a disc file, along with the large prime
factor of each. The file was then searched for pairs of numbers with the same large
prime factor, and 690 such pairs were found (including several triplets, each counted
as two pairs).

A total of 70 hours of CPU time was required for the sieving, plus another 8
minutes to find the 690 matching pairs. Very little of the 70 hours (less than one
hour) was spent processing numbers b, after they had been found.

Each component v,J of the vectors was stored as a single bit; thus sixteen
components were stored in each 16-bit word, and 63 words sufficed for each vector.
As each matching pair of numbers was found, the two vectors were added together
to cancel out the common large prime factor. The 690 vector s thus formed were
combined with the 327 vectors of the completely factored numbers to form a
1017 X 1000 matrix. This matrix was then reduced by Gaussian elimination, and 27
different linear dependencies were found. All vector additions were done using the
logical operation XOR (equivalent to addition in the integers mod 2) so 16 pairs of
components could be added in a single operation. Despite the packing of the matrix
into 1017 X 63 sixteen-bit words, the entire matrix could not fit into the 32767 word
maximum data stack of the HP3000. The matrix reduction routine therefore used
virtual memory, with no more than 208 rows of the matrix in the core memory at
any time.

The reduction of the matrix required 340 seconds of CPU time. Of this time,
approximately 90 seconds were spent on row operations, and the rest on reading and
writing to the disc file and searching for rows with a 1 in a given column. The
distinction is important because the time required for row operations is proportional
to k3 (where k is the number of elements in the factor base) while the time required
for the other procedures is proportional to k2. (If the core memory is held fixed,
then the time required for reading and writing also grows as k3, but we shall show in
Section V that with an efficient program this time is small compared to the time for
row operations.)

Once the matrix was reduced, a few more minutes were required to factor n.
Fortunately it was not necessary to calculate x and y (which would have taken
several hours, since these numbers have thousands of digits), but only their residues
(mod n). The residue of x was computed by taking the product of all a 's in
Z mod n. To compute the residue of y, each bi was represented as the formal product
of primes, and these primes were combined to yield y2 as a formal product. Each
exponent of this formal product was then divided by two, and the prime factors
multiplied together in Z mod n.

IV. Comparison of Running Times. Let

L =e log nlog log n

290 JOSEPH L. GERVER

For all factoring algorithms of the kind discussed in this paper, the time required to
factor n is believed to be a function of the form

La+o()
where a is a constant and o(l) - Gas n - .

For each algorithm, this belief can be proved [7] and the value of a computed if
we assume that the special numbers among which one searches for the b, 's are just as
likely to factor into small primes as random numbers of the same order of
magnitude. For CF, a = 2, for CFEA, a = T/ F2, and for QS, a = 31/4 (this
last value can be improved slightly by using the Coppersmith-Winograd method [3]
to reduce the matrix, but this is not practical for reasonable values of n).

The optimum size, k, for the factor base is

DO +o(l)

where /B = V2/4 for both CF and QS, and 1/ A6 for CFEA.
Both a and /B are asymptotic values. However, one would expect QS to be slower

than CF and CFEA for small n for the following reason: Let a/c be a continued
fraction convergent to vn , and let b = a2 - c2n. Then b = O(Fn), and the
probability that b can be factored over the factor base is uU?+O(U) where

u = log n/log Pk

(Pk being the largest prime on the factor base) [2]. To find k such numbers, one
would expect to have to search

M - kuu+o(u)

continued fraction convergents. On the other hand, if we use QS, with a - [Ef] + m
and b =a2 - n, then b O(mvn), and

u = (log m + log n)/log Pk

Typically, m is on the order of M, the total number of numbers sieved, so we can
estimate M by simultaneously solving the two equations u = (log M + log F1)/log Pk

and M -kuU. For very large n, the term log M becomes unimportant in that it does
not affect the value of a or /3. However, for n - 1047, logn - 23.5 log 10 and, even
for CF and CFEA, M is typically [9] around 2 X 107 (slightly larger if n is not a
quadratic residue mod 3, 5, and 8), so log M - 7 log 10, a significant fraction of logiFn
Hence u is significantly larger for QS than for CF and CFEA and M must also be
larger; as we have seen it is just under 9 X 108 in this instance. We save time by
testing numbers with a sieve instead of trial division, but for small n we lose more
time than we save because we have more numbers to test (see also Section 9 of [7]).

Furthermore, to minimize the running time of QS, we should choose k so that the
sieving time is on the same order as the matrix reduction time. Thus any increase in
the sieving time implies an increase in the optimum size of k. We would therefore
expect k to be larger for QS than for CF although both algorithms have the same
value of /3. Empirical data on this question is not available for CF, since Wagstaff [9]
used only one value of k, viz. 223. For QS, k = 1000 is too small, since the sieving
time (70 hours) is much greater than the matrix reduction time (5 minutes) with this
value of k.

FACTORING LARGE NUMBERS WITH A QUADRATIC SIEVE 291

To estimate the optimum value of k for QS, let

=L/4+8 k -
2

where I 8 1 is small. Then from [7] we have

M LV214+8+(V2T +48)-' +o(I) M -

Note that

I I * I 1 (1 48
82)\ 1

2+48 2 1+48/2 2~~~ 2 + 0(8i 2 28+ 0(82), V2 + 48 V2 I + 48/2 V2 F2 F

so that

kM= L2+O(&2)+0(1)

Thus for 8 near 0, we have kM approximately constant, provided the error term o(l)
does not behave too wildly. The time required to sieve a given interval only grows as

k

I = 0(log log k).

Therefore the sieving time should be inversely proportional to k. The matrix
reduction time, with Gaussian elimination, is proportional to k3. Therefore, to
minimize the total time, the sieving time should be about three times the matrix
reduction time. If we naively extrapolate from k= 1000, we obtain an optimum
value of k = 5000, with a sieving time of 70/5 = 14 hours, and a matrix reduction
time of 1.5 X 53 + 4 X 52 minutes = 5 hours.

I attempted to implement the quadratic sieve algorithm with a factor base of 4700
primes, but it soon became clear that this was not practical on the HP3000 without a
major modification of the program. For one thing, the data stack was not large
enough to hold all 4700 primes, along with a logarithm and both solutions of a
quadratic congruence for each prime. It was therefore necessary to use virtual
memory, and this increased the sieving time by a factor of three, although it should
be possible to write a more efficient virtual memory program, as we shall see. It was
also necessary to ignore those b, which had a large prime factor (the "large prime
variation") and include only those which factored entirely over the factor base;
otherwise too much time would have been spent processing the numbers b, after they
had been found. This increased the sieving time by another factor of three over the
naive extrapolation discussed above. However, I was able to confirm empirically that
M varies inversely with k, since three of the first 106 numbers sieved were completely
factored over a factor base of 1000, while eight of the first 105 numbers factored
over a factor base of 4700.

It would appear that if core memory was not an obstacle, or a more efficient
virtual memory program was employed, k should be about 7000 for n on the order of
1047. This would give a sieving time of about 30 hours (since the large prime
variation cannot be used) and a matrix reduction time of 12 hours. Both times would
likely be somewhat less, the former because the numbers being sieved would be
smaller on the average than they are for k = 1000 (and therefore more likely to
factor), and the latter because the matrix would be sparser. We will assume a total
running time of 40 hours.

292 JOSEPH L. GERVER

Wagstaff's [9] CF and CFEA programs are able to factor comparable numbers in
about 30 hours and 5 hours, respectively, on an IBM370/158. A short test program
revealed that this machine is about twice as fast as the HP3000 for the QS program,
making CF about two-thirds as fast as QS, and CFEA four times faster. However,
Wagstaff's programs were partly in assembly language, while mine were entirely in
FORTRAN, so the true ratio might be closer to 0.5 for QS/CF and 3 for
QS/CFEA.

To estimate those values of n where the running times of QS and CF (resp. CFEA)
are equal, we must first estimate how fast CF/QS and CFEA/QS change with n.
Asymptotically, a = 1.061 for QS, 1.414 for CF, and 1.225 for CFEA. However, all
three exponents are somewhat lower for n on the order of 1040 to 1070. Indeed, for
CF we can calculate the running time directly for any value of n by choosing k so as
to minimize k2uu. These calculations reveal that a is closer to 1.2 for n in this range,
and this is confirmed by Wunderlich's observation [10] that the running time for CF
grows approximately as n/77. For QS, we can start with the fact that k should be
about 7000 for n = 1047, and compute optimum values of k for larger n by requiring
k3 and kuu to maintain a constant ratio. These calculations give a = 0.9. Therefore
the running time of CF/QS grows as L03. For n = 1047 L e225, so the running
times of CF and QS should be equal when L = exp[22.5 + (log 0.5)/0.3] = e202 and
n = 1039. This should be increased, perhaps to 1040, because for CF the large prime
variation is slightly more efficient with smaller n, while for QS it is still useless since
k is around 4000.

For CFEA, a depends on the number of early aborts; 1.225 is the limit for an
infinite number. Wagstaff [9] estimates that the optimum number of early aborts for
this range of n is three, which would give an asymptotic value of J13/8 = 1.275
for a [7], and an actual value (by analogy with CF and QS) of about 1.1. This
would imply that CFEA/QS grows as L02, with the running times equal at L
exp[22.5 + (log3)/0.2] = e28 and n = 1068. In this case the large prime variation is
less efficient for CFEA, perhaps by a factor of 1.5, so L should probably be about
exp[22.5 + (log2)/0.2] = e26 and n about 1060. A 60-digit number would take about
300 hours to factor on an IBM370/158.

Both CFEA and QS should be able to take full advantage of vector processing,
CFEA by doing many trial divisions at once, and QS by sieving many consecutive
subintervals at once, the length of the subintervals being divisible by pJ. This
suggests that QS might be a practical method for factoring 70 or 80-digit numbers
on a Cray 1 or similar machine. However, the 64-bit word size of the Cray 1 favors
CFEA, since trial divisions are faster while sieving is not affected, so the break-even
point between QS and CFEA might be closer to 70 digits.

Imagine a super-computer, one million times as fast as an IBM370/158 (Joseph-
son junctions, pipelining, and a 1000-element vector processor). On such a machine,
a 100-digit number could be factored in about three days with QS, or three weeks
with CFEA.

V. Fast Virtual Memory Techniques. All three algorithms require k2 bits of
memory to store the matrix. This requirement cannot be reduced much by sparse
matrix techniques because the matrix becomes denser as it is reduced. Indeed, for

FACTORING LARGE NUMBERS WITH A QUADRATIC SIEVE 293

the QS factorization described here, the matrix became saturated (half ones and half
zeroes) after about 600 of the original 1000 columns had been zeroed out. But as
long as the core memory is large enough to hold many rows of the matrix, the rest of
the matrix can be stored in a disc file, and comparatively little time will be spent
transferring rows between the disc and the core.

If, however, k begins to approach or exceed the size of the core, then more care
must be taken. For example, if at any given time the core contains elements from
only two different rows, then the time spent reading from the disc will be of the
same order of magnitude as the time spent adding rows together. This difficulty can
be eliminated by partitioning the matrix into r X r square pieces (i.e. each square is
k/r elements on a side) and storing two such squares from the same column in the
core at any given time. In addition, the core must contain a third square to keep
track of which rows of the first square are to be added to each row of the second
square. Since there are O(r2) different combinations of two squares from each of the
r columns of squares, a total of 0(r3) squares will be read from the disc, and, since
each square contains (k/r)2 elements, this will require a total of O(rk2) READ
operations. But the total number of additions required to reduce the matrix is on the
order of k3, so a neglible time will be spent reading from the disc.

For CF and CFEA, there are no other significant memory requirements, since
only O(log n) words of core are required to perform a trial division. The k elements
of the factor base can be stored in a disc file without slowing things significantly,
because much more time is required to do a trial division than to read one prime.

With QS, on the other hand, special precautions must be taken when k is
comparable to or greater than the number of words in the core memory. The time
required to sieve an interval of length s is proportional to s log log k, but in addition
to the sieving process itself, certain bookkeeping routines must be performed on each
prime, requiring time proportional to k. If k is on the order of s, then a significant
fraction of the time is spent on these bookkeeping routines. If s is fixed and k is
allowed to grow much larger than s, then the time required to check whether each
number can be factored will be proportional to k, just as in CF. It follows that a will
increase to 2. This problem can be avoided by only performing the bookkeeping
routines on a small fraction of the primes in the factor base, namely those primes
which divide at least one number in the interval being sieved. Let q = pk/s, rounded
up to the nearest integer. Those primes less than s would always remain in the core,
while the larger primes (two copies of each, one for each solution of the quadratic
congruence) would be stored in q different disc files. For each interval sieved, only
the primes in one disc file would be used, with consecutive files being read (in a
wraparound sequence) for consecutive intervals. After each prime p is used, it would
be written into one of the other disc files, namely the file r places ahead in the
sequence, where r is the integral part of (m + p)/s, and the mth element of the
interval being sieved is divisible by p.

Department of Mathematics
Rutgers University
Camden, New Jersey 08102

294 JOSEPH L. GERVER

1. J. BRILLHART, D. H. LEHMER, J. L. SELFRIDGE, B. TUCKERMAN & S. S. WAGSTAFF, Jr., "Factoriza-

tions of b' ? 1 up to high powers." (To appear).
2. E. R. CANFIELD, P. ERDOS & C. POMERANCE, "On a problem of Oppenheim concerning 'Factori-

satio Numerorum'," J. Number TheorV. (To appear.)
3. D. COPPERSMITH & S. WINOGRAD, "On the asymptotic complexity of matrix multiplication, SIAM

J. Comput. (To appear.)
4. J. D. DiXON, "Asymptotically fast factorization of integers," Math. Conmp., v. 36, 1981, pp.

255-260.
5. D. H. LEHMER, "Computer technology applied to the theory of numbers," in Studies iM Nunmber

Theorv (W. J. LeVeque, ed.), Math. Assoc. Amer., 1969, pp. 117-15 1.
6. M. A. MORRISON & J. BRILLHART, "A method of factoring and the factorization of F7," Math.

Conmp., v. 29, 1975, pp. 183-205.
7. C. POMERANCE, "Analysis and comparison of some factoring algorithms," in Computationial Methods

in Number Theory (H. W. Lenstra, Jr. and R. Tijdeman, eds.), Math. Centrum, Amsterdam. (To appear.)

8. C. P. SCHNORR, private correspondence dated 1982 (communicated to the author by C. Pomerance).

9. S. S. WAGSTAFF, JR., private correspondence dated 1981-1982.

10. M. C. WUNDERLICH, "A running time analysis of Brillhart's continued fraction factoring method,"
in Numlber Theory Carboncdale 1979 (M. B. Nathanson, ed.), Lecture Notes in Math., Vol. 751, Springer-
Verlag,1979, pp. 328-342.

