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Factoring Large Numbers With a Quadratic Sieve 

By Joseph L. Gerver 

Abstract. The quadratic sieve algorithm was used to factor a 47-digit number into primes. A 
comparison with Wagstaff's results using the continued fraction early abort algorithm suggests 
that QS should be faster than CFEA when the number being factored exceeds 60 digits (plus 
or minus ten or more digits, depending on details of the hardware and software). 

I. Introduction. Pomerance [7] has shown that, if one makes certain reasonable but 
unproved assumptions, his quadratic sieve algorithm (QS) is asymptotically faster 
than any other known general algorithm for factoring large numbers, with the 
possible exception of a very recent algorithm of Schnorr [8]. In particular, for 
sufficiently large numbers, the quadratic sieve algorithm is faster than the continued 
algorithm (CF) of Brillhart and Morrison [6]. even if the latter includes the early 
abort modification (CFEA). 

I have recently used the quadratic sieve algorithm to factor the 47-digit number 
17674971819005665268668200903822757930076116201, a factor of 3225 - 1 which 
was known [1] to be composite but had never been factored, into three prime 
factors: 119634969443826601, 286870274711101, and 515009259868501. Wagstaff 
[9] has recently used both CF and CFEA to factor several 47-digit numbers. A 
comparison of the execution times for these programs indicates that QS becomes 
faster than CF when the number to be factored exceeds 40 digits, and faster than 
CFEA when the number exceeds 60 digits. However, the ratio of the running time of 
QS to each of the other algorithms is quite insensitive to the size of the factored 
number. Thus the break-even points of 40 and 60 digits could easily be off by ?10 
digits, depending on details of the hardware and software. 

II. Description of the Algorithms. All modern general factoring algorithms (i.e. 
algorithms which do not require the factored number to be of any special form) are 
based on Fermat's observation that a composite number n can be factored if one 
can find two squares x2 _y2 (mod n), such that x Ec ? y (mod n). For then 
n I (x2 _ y2) = (x + y)(x -y) but n does not divide x + y or x -y; hence the 
greatest common divisors (n, x + y) and (n, x - y) are proper factors of n. 

To find two such squares, one starts with a factor base of k primes, PI, ... ,Pk, and 
then searches for sequences of integers a1,...,ak?+l and b1,...,bk+? such that, for 
each i, a7 b, (mod n) and b, can be completely factored over the factor base; i.e. 

b,~ 11 rPJ'I 
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For each i, let vi = (vi,1... , vik) be the vector over the integers mod 2 such that, for 
each j, v,,= c,j (mod 2). There must exist a linear dependency among the vectors 
v1,. .. ,Vk+ +, and hence a set S such that ZEl Vi = 0. Therefore f iesbi is a perfect 
square, y2, which is congruent (mod n) to x2 = fics a7. If the a, are chosen at 
random [4], there is a 50% chance (or more if n is the product of more than two 
primes) that x Z ? y (mod n). If x is congruent to ?y, one simply finds another pair 

ak+29 k+2b and another linear dependency, and tries again until n is factored. 
For CF, one searches for the a 's among the numerators of the continued fraction 

convergents of Vnh. To test whether a candidate for bi can be factored over the factor 
base, one must try to divide it by each prime pj. In CFEA, these trial divisions are 
aborted if the candidate fails too many of the early ones. 

For QS, one searches for the a 's among consecutive integers starting with [n], 
the integral part of Fn. It is only necessary to divide n and [Vn] by each pj and solve 
a quadratic congruence mod pj. After that, large blocks of possible bi's can be sieved 
at once, and no trial divisions are needed. 

III. Implementation of the Quadratic Sieve. The quadratic sieve algorithm was 
implemented with a FORTRAN program on an HP3000/series 3 computer. The 
initial factor base contained 1000 elements, namely the first 999 primes modulo 
which n (the number factored) is a quadratic residue, plus the "prime" -1. The 
element -1 was included so that the numbers bi could be negative as well as positive, 
thus doubling the number of candidates for bi less than a given absolute value. 

First, the quadratic congruence 

([] + z) -nn0 (mod p) 

was solved for p equal to each prime in the factor base, and also modulo the squares 
of all the primes, the cubes of all primes less than 130, and higher powers of the 
smallest primes. This process required 7 minutes of CPU time, using a fast algorithm 
in the spirit of Lehmer [5]. 

The integers [En ] + m were then sieved, in blocks of 10000, for m up to 
400,000,000 and down to -499,999,999. Each block was sieved by initially setting 
each element of a 10000 element array, SUMLOG, to the logarithm of the corre- 
sponding integer in each block. Then, for each odd prime p in the factor base, the 
logarithm of p was subtracted from SUMLOG(J), where J was initially set to z, and 
Z2, respectively, the two solutions of the above congruence, and then increased by 
increments of p until J was greater than 10000. The final values of J were then 
decreased by 10000 and stored, to be used as initial values for the next block. This 
procedure was then repeated for p2, and, where appropriate, for higher powers of p. 
For powers of p too high to be included in the sieve, trial division was employed 
where necessary. The same procedure was then used for powers of two, except that J 
was incremented by the previous power of two, since in this case n 1 (mod 8), and 
therefore the quadratic congruences modulo powers of two have four solutions each. 
To speed things up by using fixed-point instead of floating-point arithmetic, and to 
conserve memory, all logarithms were taken to be the integral part of 10 log2. 

After sieving with all primes and prime powers, the array SUMLOG was scanned 
to pick out values close to zero, which would indicate a number b1 = ([vFn3 + m)2 - n 
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completely factored into primes in the factor base. For each such b,, the vector vi, 
was computed and stored, along with m, in a disc file. Altogether, 327 such numbers 
were found. In addition, SUMLOG was scanned to pick out values less than twice 
the log of plow, the largest prime in the factor base. These elements of SUMLOG 
corresponded to numbers b, which factored into primes in the factor base, except for 
one larger factor which was less than p20, and hence prime. The vectors for these 
numbers, 25747 in all, were also stored in a disc file, along with the large prime 
factor of each. The file was then searched for pairs of numbers with the same large 
prime factor, and 690 such pairs were found (including several triplets, each counted 
as two pairs). 

A total of 70 hours of CPU time was required for the sieving, plus another 8 
minutes to find the 690 matching pairs. Very little of the 70 hours (less than one 
hour) was spent processing numbers b, after they had been found. 

Each component v,J of the vectors was stored as a single bit; thus sixteen 
components were stored in each 16-bit word, and 63 words sufficed for each vector. 
As each matching pair of numbers was found, the two vectors were added together 
to cancel out the common large prime factor. The 690 vector s thus formed were 
combined with the 327 vectors of the completely factored numbers to form a 
1017 X 1000 matrix. This matrix was then reduced by Gaussian elimination, and 27 
different linear dependencies were found. All vector additions were done using the 
logical operation XOR (equivalent to addition in the integers mod 2) so 16 pairs of 
components could be added in a single operation. Despite the packing of the matrix 
into 1017 X 63 sixteen-bit words, the entire matrix could not fit into the 32767 word 
maximum data stack of the HP3000. The matrix reduction routine therefore used 
virtual memory, with no more than 208 rows of the matrix in the core memory at 
any time. 

The reduction of the matrix required 340 seconds of CPU time. Of this time, 
approximately 90 seconds were spent on row operations, and the rest on reading and 
writing to the disc file and searching for rows with a 1 in a given column. The 
distinction is important because the time required for row operations is proportional 
to k3 (where k is the number of elements in the factor base) while the time required 
for the other procedures is proportional to k2. (If the core memory is held fixed, 
then the time required for reading and writing also grows as k3, but we shall show in 
Section V that with an efficient program this time is small compared to the time for 
row operations.) 

Once the matrix was reduced, a few more minutes were required to factor n. 
Fortunately it was not necessary to calculate x and y (which would have taken 
several hours, since these numbers have thousands of digits), but only their residues 
(mod n). The residue of x was computed by taking the product of all a 's in 
Z mod n. To compute the residue of y, each bi was represented as the formal product 
of primes, and these primes were combined to yield y2 as a formal product. Each 
exponent of this formal product was then divided by two, and the prime factors 
multiplied together in Z mod n. 

IV. Comparison of Running Times. Let 

L =e log nlog log n 
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For all factoring algorithms of the kind discussed in this paper, the time required to 
factor n is believed to be a function of the form 

La+o() 
where a is a constant and o(l) - Gas n - . 

For each algorithm, this belief can be proved [7] and the value of a computed if 
we assume that the special numbers among which one searches for the b, 's are just as 
likely to factor into small primes as random numbers of the same order of 
magnitude. For CF, a = 2, for CFEA, a = T/ F2, and for QS, a = 31/4 (this 
last value can be improved slightly by using the Coppersmith-Winograd method [3] 
to reduce the matrix, but this is not practical for reasonable values of n). 

The optimum size, k, for the factor base is 

DO +o(l) 

where /B = V2/4 for both CF and QS, and 1/ A6 for CFEA. 
Both a and /B are asymptotic values. However, one would expect QS to be slower 

than CF and CFEA for small n for the following reason: Let a/c be a continued 
fraction convergent to vn , and let b = a2 - c2n. Then b = O(Fn ), and the 
probability that b can be factored over the factor base is uU?+O(U) where 

u = log n/log Pk 

(Pk being the largest prime on the factor base) [2]. To find k such numbers, one 
would expect to have to search 

M - kuu+o(u) 

continued fraction convergents. On the other hand, if we use QS, with a - [Ef] + m 
and b =a2 - n, then b O(mvn ), and 

u = (log m + log n )/log Pk 

Typically, m is on the order of M, the total number of numbers sieved, so we can 
estimate M by simultaneously solving the two equations u = (log M + log F1)/log Pk 

and M -kuU. For very large n, the term log M becomes unimportant in that it does 
not affect the value of a or /3. However, for n - 1047, logn - 23.5 log 10 and, even 
for CF and CFEA, M is typically [9] around 2 X 107 (slightly larger if n is not a 
quadratic residue mod 3, 5, and 8), so log M - 7 log 10, a significant fraction of logiFn 
Hence u is significantly larger for QS than for CF and CFEA and M must also be 
larger; as we have seen it is just under 9 X 108 in this instance. We save time by 
testing numbers with a sieve instead of trial division, but for small n we lose more 
time than we save because we have more numbers to test (see also Section 9 of [7]). 

Furthermore, to minimize the running time of QS, we should choose k so that the 
sieving time is on the same order as the matrix reduction time. Thus any increase in 
the sieving time implies an increase in the optimum size of k. We would therefore 
expect k to be larger for QS than for CF although both algorithms have the same 
value of /3. Empirical data on this question is not available for CF, since Wagstaff [9] 
used only one value of k, viz. 223. For QS, k = 1000 is too small, since the sieving 
time (70 hours) is much greater than the matrix reduction time (5 minutes) with this 
value of k. 
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To estimate the optimum value of k for QS, let 

=L/4+8 k - 
2 

where I 8 1 is small. Then from [7] we have 

M LV214+8+(V2T +48)-' +o(I) M - 

Note that 

I I * I 1 (1 48 
82)\ 1 

2+48 2 1+48/2 2~~~ 2 + 0(8i 2 28+ 0(82), V2 + 48 V2 I + 48/2 V2 F2 F 

so that 

kM= L2+O(&2)+0(1) 

Thus for 8 near 0, we have kM approximately constant, provided the error term o(l) 
does not behave too wildly. The time required to sieve a given interval only grows as 

k 

I = 0(log log k). 

Therefore the sieving time should be inversely proportional to k. The matrix 
reduction time, with Gaussian elimination, is proportional to k3. Therefore, to 
minimize the total time, the sieving time should be about three times the matrix 
reduction time. If we naively extrapolate from k= 1000, we obtain an optimum 
value of k = 5000, with a sieving time of 70/5 = 14 hours, and a matrix reduction 
time of 1.5 X 53 + 4 X 52 minutes = 5 hours. 

I attempted to implement the quadratic sieve algorithm with a factor base of 4700 
primes, but it soon became clear that this was not practical on the HP3000 without a 
major modification of the program. For one thing, the data stack was not large 
enough to hold all 4700 primes, along with a logarithm and both solutions of a 
quadratic congruence for each prime. It was therefore necessary to use virtual 
memory, and this increased the sieving time by a factor of three, although it should 
be possible to write a more efficient virtual memory program, as we shall see. It was 
also necessary to ignore those b, which had a large prime factor (the "large prime 
variation") and include only those which factored entirely over the factor base; 
otherwise too much time would have been spent processing the numbers b, after they 
had been found. This increased the sieving time by another factor of three over the 
naive extrapolation discussed above. However, I was able to confirm empirically that 
M varies inversely with k, since three of the first 106 numbers sieved were completely 
factored over a factor base of 1000, while eight of the first 105 numbers factored 
over a factor base of 4700. 

It would appear that if core memory was not an obstacle, or a more efficient 
virtual memory program was employed, k should be about 7000 for n on the order of 
1047. This would give a sieving time of about 30 hours (since the large prime 
variation cannot be used) and a matrix reduction time of 12 hours. Both times would 
likely be somewhat less, the former because the numbers being sieved would be 
smaller on the average than they are for k = 1000 (and therefore more likely to 
factor), and the latter because the matrix would be sparser. We will assume a total 
running time of 40 hours. 
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Wagstaff's [9] CF and CFEA programs are able to factor comparable numbers in 
about 30 hours and 5 hours, respectively, on an IBM370/158. A short test program 
revealed that this machine is about twice as fast as the HP3000 for the QS program, 
making CF about two-thirds as fast as QS, and CFEA four times faster. However, 
Wagstaff's programs were partly in assembly language, while mine were entirely in 
FORTRAN, so the true ratio might be closer to 0.5 for QS/CF and 3 for 
QS/CFEA. 

To estimate those values of n where the running times of QS and CF (resp. CFEA) 
are equal, we must first estimate how fast CF/QS and CFEA/QS change with n. 
Asymptotically, a = 1.061 for QS, 1.414 for CF, and 1.225 for CFEA. However, all 
three exponents are somewhat lower for n on the order of 1040 to 1070. Indeed, for 
CF we can calculate the running time directly for any value of n by choosing k so as 
to minimize k2uu. These calculations reveal that a is closer to 1.2 for n in this range, 
and this is confirmed by Wunderlich's observation [10] that the running time for CF 
grows approximately as n/77. For QS, we can start with the fact that k should be 
about 7000 for n = 1047, and compute optimum values of k for larger n by requiring 
k3 and kuu to maintain a constant ratio. These calculations give a = 0.9. Therefore 
the running time of CF/QS grows as L03. For n = 1047 L e225, so the running 
times of CF and QS should be equal when L = exp[22.5 + (log 0.5)/0.3] = e202 and 
n = 1039. This should be increased, perhaps to 1040, because for CF the large prime 
variation is slightly more efficient with smaller n, while for QS it is still useless since 
k is around 4000. 

For CFEA, a depends on the number of early aborts; 1.225 is the limit for an 
infinite number. Wagstaff [9] estimates that the optimum number of early aborts for 
this range of n is three, which would give an asymptotic value of J13/8 = 1.275 
for a [7], and an actual value (by analogy with CF and QS) of about 1.1. This 
would imply that CFEA/QS grows as L02, with the running times equal at L 
exp[22.5 + (log3)/0.2] = e28 and n = 1068. In this case the large prime variation is 
less efficient for CFEA, perhaps by a factor of 1.5, so L should probably be about 
exp[22.5 + (log2)/0.2] = e26 and n about 1060. A 60-digit number would take about 
300 hours to factor on an IBM370/158. 

Both CFEA and QS should be able to take full advantage of vector processing, 
CFEA by doing many trial divisions at once, and QS by sieving many consecutive 
subintervals at once, the length of the subintervals being divisible by pJ. This 
suggests that QS might be a practical method for factoring 70 or 80-digit numbers 
on a Cray 1 or similar machine. However, the 64-bit word size of the Cray 1 favors 
CFEA, since trial divisions are faster while sieving is not affected, so the break-even 
point between QS and CFEA might be closer to 70 digits. 

Imagine a super-computer, one million times as fast as an IBM370/158 (Joseph- 
son junctions, pipelining, and a 1000-element vector processor). On such a machine, 
a 100-digit number could be factored in about three days with QS, or three weeks 
with CFEA. 

V. Fast Virtual Memory Techniques. All three algorithms require k2 bits of 
memory to store the matrix. This requirement cannot be reduced much by sparse 
matrix techniques because the matrix becomes denser as it is reduced. Indeed, for 
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the QS factorization described here, the matrix became saturated (half ones and half 
zeroes) after about 600 of the original 1000 columns had been zeroed out. But as 
long as the core memory is large enough to hold many rows of the matrix, the rest of 
the matrix can be stored in a disc file, and comparatively little time will be spent 
transferring rows between the disc and the core. 

If, however, k begins to approach or exceed the size of the core, then more care 
must be taken. For example, if at any given time the core contains elements from 
only two different rows, then the time spent reading from the disc will be of the 
same order of magnitude as the time spent adding rows together. This difficulty can 
be eliminated by partitioning the matrix into r X r square pieces (i.e. each square is 
k/r elements on a side) and storing two such squares from the same column in the 
core at any given time. In addition, the core must contain a third square to keep 
track of which rows of the first square are to be added to each row of the second 
square. Since there are O( r2) different combinations of two squares from each of the 
r columns of squares, a total of 0(r3) squares will be read from the disc, and, since 
each square contains (k/r )2 elements, this will require a total of O(rk2) READ 
operations. But the total number of additions required to reduce the matrix is on the 
order of k3, so a neglible time will be spent reading from the disc. 

For CF and CFEA, there are no other significant memory requirements, since 
only O(log n) words of core are required to perform a trial division. The k elements 
of the factor base can be stored in a disc file without slowing things significantly, 
because much more time is required to do a trial division than to read one prime. 

With QS, on the other hand, special precautions must be taken when k is 
comparable to or greater than the number of words in the core memory. The time 
required to sieve an interval of length s is proportional to s log log k, but in addition 
to the sieving process itself, certain bookkeeping routines must be performed on each 
prime, requiring time proportional to k. If k is on the order of s, then a significant 
fraction of the time is spent on these bookkeeping routines. If s is fixed and k is 
allowed to grow much larger than s, then the time required to check whether each 
number can be factored will be proportional to k, just as in CF. It follows that a will 
increase to 2. This problem can be avoided by only performing the bookkeeping 
routines on a small fraction of the primes in the factor base, namely those primes 
which divide at least one number in the interval being sieved. Let q = pk/s, rounded 
up to the nearest integer. Those primes less than s would always remain in the core, 
while the larger primes (two copies of each, one for each solution of the quadratic 
congruence) would be stored in q different disc files. For each interval sieved, only 
the primes in one disc file would be used, with consecutive files being read (in a 
wraparound sequence) for consecutive intervals. After each prime p is used, it would 
be written into one of the other disc files, namely the file r places ahead in the 
sequence, where r is the integral part of (m + p)/s, and the mth element of the 
interval being sieved is divisible by p. 
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